550 lines
14 KiB
Go
550 lines
14 KiB
Go
|
/*
|
||
|
* Copyright 2017 Dgraph Labs, Inc. and Contributors
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package badger
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"math"
|
||
|
"sort"
|
||
|
"strconv"
|
||
|
"sync"
|
||
|
"sync/atomic"
|
||
|
"time"
|
||
|
|
||
|
"github.com/dgraph-io/badger/y"
|
||
|
farm "github.com/dgryski/go-farm"
|
||
|
"github.com/pkg/errors"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
deleteItem = iota
|
||
|
setItem
|
||
|
)
|
||
|
|
||
|
type uint64Heap []uint64
|
||
|
|
||
|
func (u uint64Heap) Len() int { return len(u) }
|
||
|
func (u uint64Heap) Less(i int, j int) bool { return u[i] < u[j] }
|
||
|
func (u uint64Heap) Swap(i int, j int) { u[i], u[j] = u[j], u[i] }
|
||
|
func (u *uint64Heap) Push(x interface{}) { *u = append(*u, x.(uint64)) }
|
||
|
func (u *uint64Heap) Pop() interface{} {
|
||
|
old := *u
|
||
|
n := len(old)
|
||
|
x := old[n-1]
|
||
|
*u = old[0 : n-1]
|
||
|
return x
|
||
|
}
|
||
|
|
||
|
type oracle struct {
|
||
|
curRead uint64 // Managed by the mutex.
|
||
|
refCount int64
|
||
|
isManaged bool // Does not change value, so no locking required.
|
||
|
|
||
|
sync.Mutex
|
||
|
writeLock sync.Mutex
|
||
|
nextCommit uint64
|
||
|
|
||
|
// commits stores a key fingerprint and latest commit counter for it.
|
||
|
// refCount is used to clear out commits map to avoid a memory blowup.
|
||
|
commits map[uint64]uint64
|
||
|
}
|
||
|
|
||
|
func (o *oracle) addRef() {
|
||
|
atomic.AddInt64(&o.refCount, 1)
|
||
|
}
|
||
|
|
||
|
func (o *oracle) decrRef() {
|
||
|
if count := atomic.AddInt64(&o.refCount, -1); count == 0 {
|
||
|
// Clear out commits maps to release memory.
|
||
|
o.Lock()
|
||
|
// Avoids the race where something new is added to commitsMap
|
||
|
// after we check refCount and before we take Lock.
|
||
|
if atomic.LoadInt64(&o.refCount) != 0 {
|
||
|
o.Unlock()
|
||
|
return
|
||
|
}
|
||
|
if len(o.commits) >= 1000 { // If the map is still small, let it slide.
|
||
|
o.commits = make(map[uint64]uint64)
|
||
|
}
|
||
|
o.Unlock()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (o *oracle) readTs() uint64 {
|
||
|
if o.isManaged {
|
||
|
return math.MaxUint64
|
||
|
}
|
||
|
return atomic.LoadUint64(&o.curRead)
|
||
|
}
|
||
|
|
||
|
func (o *oracle) commitTs() uint64 {
|
||
|
o.Lock()
|
||
|
defer o.Unlock()
|
||
|
return o.nextCommit
|
||
|
}
|
||
|
|
||
|
// hasConflict must be called while having a lock.
|
||
|
func (o *oracle) hasConflict(txn *Txn) bool {
|
||
|
if len(txn.reads) == 0 {
|
||
|
return false
|
||
|
}
|
||
|
for _, ro := range txn.reads {
|
||
|
if ts, has := o.commits[ro]; has && ts > txn.readTs {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
func (o *oracle) newCommitTs(txn *Txn) uint64 {
|
||
|
o.Lock()
|
||
|
defer o.Unlock()
|
||
|
|
||
|
if o.hasConflict(txn) {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
var ts uint64
|
||
|
if !o.isManaged {
|
||
|
// This is the general case, when user doesn't specify the read and commit ts.
|
||
|
ts = o.nextCommit
|
||
|
o.nextCommit++
|
||
|
|
||
|
} else {
|
||
|
// If commitTs is set, use it instead.
|
||
|
ts = txn.commitTs
|
||
|
}
|
||
|
|
||
|
for _, w := range txn.writes {
|
||
|
o.commits[w] = ts // Update the commitTs.
|
||
|
}
|
||
|
return ts
|
||
|
}
|
||
|
|
||
|
func (o *oracle) doneCommit(cts uint64) {
|
||
|
if o.isManaged {
|
||
|
// No need to update anything.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
for {
|
||
|
curRead := atomic.LoadUint64(&o.curRead)
|
||
|
if cts <= curRead {
|
||
|
return
|
||
|
}
|
||
|
atomic.CompareAndSwapUint64(&o.curRead, curRead, cts)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Txn represents a Badger transaction.
|
||
|
type Txn struct {
|
||
|
readTs uint64
|
||
|
commitTs uint64
|
||
|
|
||
|
update bool // update is used to conditionally keep track of reads.
|
||
|
reads []uint64 // contains fingerprints of keys read.
|
||
|
writes []uint64 // contains fingerprints of keys written.
|
||
|
|
||
|
pendingWrites map[string]*Entry // cache stores any writes done by txn.
|
||
|
|
||
|
db *DB
|
||
|
callbacks []func()
|
||
|
discarded bool
|
||
|
|
||
|
size int64
|
||
|
count int64
|
||
|
}
|
||
|
|
||
|
type pendingWritesIterator struct {
|
||
|
entries []*Entry
|
||
|
nextIdx int
|
||
|
readTs uint64
|
||
|
reversed bool
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Next() {
|
||
|
pi.nextIdx++
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Rewind() {
|
||
|
pi.nextIdx = 0
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Seek(key []byte) {
|
||
|
key = y.ParseKey(key)
|
||
|
pi.nextIdx = sort.Search(len(pi.entries), func(idx int) bool {
|
||
|
cmp := bytes.Compare(pi.entries[idx].Key, key)
|
||
|
if !pi.reversed {
|
||
|
return cmp >= 0
|
||
|
}
|
||
|
return cmp <= 0
|
||
|
})
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Key() []byte {
|
||
|
y.AssertTrue(pi.Valid())
|
||
|
entry := pi.entries[pi.nextIdx]
|
||
|
return y.KeyWithTs(entry.Key, pi.readTs)
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Value() y.ValueStruct {
|
||
|
y.AssertTrue(pi.Valid())
|
||
|
entry := pi.entries[pi.nextIdx]
|
||
|
return y.ValueStruct{
|
||
|
Value: entry.Value,
|
||
|
Meta: entry.meta,
|
||
|
UserMeta: entry.UserMeta,
|
||
|
ExpiresAt: entry.ExpiresAt,
|
||
|
Version: pi.readTs,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Valid() bool {
|
||
|
return pi.nextIdx < len(pi.entries)
|
||
|
}
|
||
|
|
||
|
func (pi *pendingWritesIterator) Close() error {
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
func (txn *Txn) newPendingWritesIterator(reversed bool) *pendingWritesIterator {
|
||
|
if !txn.update || len(txn.pendingWrites) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
entries := make([]*Entry, 0, len(txn.pendingWrites))
|
||
|
for _, e := range txn.pendingWrites {
|
||
|
entries = append(entries, e)
|
||
|
}
|
||
|
// Number of pending writes per transaction shouldn't be too big in general.
|
||
|
sort.Slice(entries, func(i, j int) bool {
|
||
|
cmp := bytes.Compare(entries[i].Key, entries[j].Key)
|
||
|
if !reversed {
|
||
|
return cmp < 0
|
||
|
}
|
||
|
return cmp > 0
|
||
|
})
|
||
|
return &pendingWritesIterator{
|
||
|
readTs: txn.readTs,
|
||
|
entries: entries,
|
||
|
reversed: reversed,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (txn *Txn) checkSize(e *Entry) error {
|
||
|
count := txn.count + 1
|
||
|
// Extra bytes for version in key.
|
||
|
size := txn.size + int64(e.estimateSize(txn.db.opt.ValueThreshold)) + 10
|
||
|
if count >= txn.db.opt.maxBatchCount || size >= txn.db.opt.maxBatchSize {
|
||
|
return ErrTxnTooBig
|
||
|
}
|
||
|
txn.count, txn.size = count, size
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// Set adds a key-value pair to the database.
|
||
|
//
|
||
|
// It will return ErrReadOnlyTxn if update flag was set to false when creating the
|
||
|
// transaction.
|
||
|
func (txn *Txn) Set(key, val []byte) error {
|
||
|
e := &Entry{
|
||
|
Key: key,
|
||
|
Value: val,
|
||
|
}
|
||
|
return txn.SetEntry(e)
|
||
|
}
|
||
|
|
||
|
// SetWithMeta adds a key-value pair to the database, along with a metadata
|
||
|
// byte. This byte is stored alongside the key, and can be used as an aid to
|
||
|
// interpret the value or store other contextual bits corresponding to the
|
||
|
// key-value pair.
|
||
|
func (txn *Txn) SetWithMeta(key, val []byte, meta byte) error {
|
||
|
e := &Entry{Key: key, Value: val, UserMeta: meta}
|
||
|
return txn.SetEntry(e)
|
||
|
}
|
||
|
|
||
|
// SetWithTTL adds a key-value pair to the database, along with a time-to-live
|
||
|
// (TTL) setting. A key stored with with a TTL would automatically expire after
|
||
|
// the time has elapsed , and be eligible for garbage collection.
|
||
|
func (txn *Txn) SetWithTTL(key, val []byte, dur time.Duration) error {
|
||
|
expire := time.Now().Add(dur).Unix()
|
||
|
e := &Entry{Key: key, Value: val, ExpiresAt: uint64(expire)}
|
||
|
return txn.SetEntry(e)
|
||
|
}
|
||
|
|
||
|
func (txn *Txn) modify(e *Entry, operation int) error {
|
||
|
if !txn.update {
|
||
|
return ErrReadOnlyTxn
|
||
|
} else if txn.discarded {
|
||
|
return ErrDiscardedTxn
|
||
|
} else if len(e.Key) == 0 {
|
||
|
return ErrEmptyKey
|
||
|
} else if len(e.Key) > maxKeySize {
|
||
|
return exceedsMaxKeySizeError(e.Key)
|
||
|
} else if int64(len(e.Value)) > txn.db.opt.ValueLogFileSize {
|
||
|
return exceedsMaxValueSizeError(e.Value, txn.db.opt.ValueLogFileSize)
|
||
|
}
|
||
|
if err := txn.checkSize(e); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
fp := farm.Fingerprint64(e.Key) // Avoid dealing with byte arrays.
|
||
|
txn.writes = append(txn.writes, fp)
|
||
|
txn.pendingWrites[string(e.Key)] = e
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// SetEntry takes an Entry struct and adds the key-value pair in the struct, along
|
||
|
// with other metadata to the database.
|
||
|
func (txn *Txn) SetEntry(e *Entry) error {
|
||
|
return txn.modify(e, setItem)
|
||
|
}
|
||
|
|
||
|
// Delete deletes a key. This is done by adding a delete marker for the key at commit timestamp.
|
||
|
// Any reads happening before this timestamp would be unaffected. Any reads after this commit would
|
||
|
// see the deletion.
|
||
|
func (txn *Txn) Delete(key []byte) error {
|
||
|
e := &Entry{
|
||
|
Key: key,
|
||
|
meta: bitDelete,
|
||
|
}
|
||
|
return txn.modify(e, deleteItem)
|
||
|
}
|
||
|
|
||
|
// Get looks for key and returns corresponding Item.
|
||
|
// If key is not found, ErrKeyNotFound is returned.
|
||
|
func (txn *Txn) Get(key []byte) (item *Item, rerr error) {
|
||
|
if len(key) == 0 {
|
||
|
return nil, ErrEmptyKey
|
||
|
} else if txn.discarded {
|
||
|
return nil, ErrDiscardedTxn
|
||
|
}
|
||
|
|
||
|
item = new(Item)
|
||
|
if txn.update {
|
||
|
if e, has := txn.pendingWrites[string(key)]; has && bytes.Equal(key, e.Key) {
|
||
|
if isDeletedOrExpired(e.meta, e.ExpiresAt) {
|
||
|
return nil, ErrKeyNotFound
|
||
|
}
|
||
|
// Fulfill from cache.
|
||
|
item.meta = e.meta
|
||
|
item.val = e.Value
|
||
|
item.userMeta = e.UserMeta
|
||
|
item.key = key
|
||
|
item.status = prefetched
|
||
|
item.version = txn.readTs
|
||
|
// We probably don't need to set db on item here.
|
||
|
return item, nil
|
||
|
}
|
||
|
// Only track reads if this is update txn. No need to track read if txn serviced it
|
||
|
// internally.
|
||
|
fp := farm.Fingerprint64(key)
|
||
|
txn.reads = append(txn.reads, fp)
|
||
|
}
|
||
|
|
||
|
seek := y.KeyWithTs(key, txn.readTs)
|
||
|
vs, err := txn.db.get(seek)
|
||
|
if err != nil {
|
||
|
return nil, errors.Wrapf(err, "DB::Get key: %q", key)
|
||
|
}
|
||
|
if vs.Value == nil && vs.Meta == 0 {
|
||
|
return nil, ErrKeyNotFound
|
||
|
}
|
||
|
if isDeletedOrExpired(vs.Meta, vs.ExpiresAt) {
|
||
|
return nil, ErrKeyNotFound
|
||
|
}
|
||
|
|
||
|
item.key = key
|
||
|
item.version = vs.Version
|
||
|
item.meta = vs.Meta
|
||
|
item.userMeta = vs.UserMeta
|
||
|
item.db = txn.db
|
||
|
item.vptr = vs.Value
|
||
|
item.txn = txn
|
||
|
return item, nil
|
||
|
}
|
||
|
|
||
|
func (txn *Txn) runCallbacks() {
|
||
|
for _, cb := range txn.callbacks {
|
||
|
cb()
|
||
|
}
|
||
|
txn.callbacks = nil
|
||
|
}
|
||
|
|
||
|
// Discard discards a created transaction. This method is very important and must be called. Commit
|
||
|
// method calls this internally, however, calling this multiple times doesn't cause any issues. So,
|
||
|
// this can safely be called via a defer right when transaction is created.
|
||
|
//
|
||
|
// NOTE: If any operations are run on a discarded transaction, ErrDiscardedTxn is returned.
|
||
|
func (txn *Txn) Discard() {
|
||
|
if txn.discarded { // Avoid a re-run.
|
||
|
return
|
||
|
}
|
||
|
txn.discarded = true
|
||
|
txn.runCallbacks()
|
||
|
|
||
|
if txn.update {
|
||
|
txn.db.orc.decrRef()
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Commit commits the transaction, following these steps:
|
||
|
//
|
||
|
// 1. If there are no writes, return immediately.
|
||
|
//
|
||
|
// 2. Check if read rows were updated since txn started. If so, return ErrConflict.
|
||
|
//
|
||
|
// 3. If no conflict, generate a commit timestamp and update written rows' commit ts.
|
||
|
//
|
||
|
// 4. Batch up all writes, write them to value log and LSM tree.
|
||
|
//
|
||
|
// 5. If callback is provided, Badger will return immediately after checking
|
||
|
// for conflicts. Writes to the database will happen in the background. If
|
||
|
// there is a conflict, an error will be returned and the callback will not
|
||
|
// run. If there are no conflicts, the callback will be called in the
|
||
|
// background upon successful completion of writes or any error during write.
|
||
|
//
|
||
|
// If error is nil, the transaction is successfully committed. In case of a non-nil error, the LSM
|
||
|
// tree won't be updated, so there's no need for any rollback.
|
||
|
func (txn *Txn) Commit(callback func(error)) error {
|
||
|
if txn.commitTs == 0 && txn.db.opt.managedTxns {
|
||
|
return ErrManagedTxn
|
||
|
}
|
||
|
if txn.discarded {
|
||
|
return ErrDiscardedTxn
|
||
|
}
|
||
|
defer txn.Discard()
|
||
|
if len(txn.writes) == 0 {
|
||
|
return nil // Nothing to do.
|
||
|
}
|
||
|
|
||
|
state := txn.db.orc
|
||
|
state.writeLock.Lock()
|
||
|
commitTs := state.newCommitTs(txn)
|
||
|
if commitTs == 0 {
|
||
|
state.writeLock.Unlock()
|
||
|
return ErrConflict
|
||
|
}
|
||
|
|
||
|
entries := make([]*Entry, 0, len(txn.pendingWrites)+1)
|
||
|
for _, e := range txn.pendingWrites {
|
||
|
// Suffix the keys with commit ts, so the key versions are sorted in
|
||
|
// descending order of commit timestamp.
|
||
|
e.Key = y.KeyWithTs(e.Key, commitTs)
|
||
|
e.meta |= bitTxn
|
||
|
entries = append(entries, e)
|
||
|
}
|
||
|
e := &Entry{
|
||
|
Key: y.KeyWithTs(txnKey, commitTs),
|
||
|
Value: []byte(strconv.FormatUint(commitTs, 10)),
|
||
|
meta: bitFinTxn,
|
||
|
}
|
||
|
entries = append(entries, e)
|
||
|
|
||
|
req, err := txn.db.sendToWriteCh(entries)
|
||
|
state.writeLock.Unlock()
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Need to release all locks or writes can get deadlocked.
|
||
|
txn.runCallbacks()
|
||
|
|
||
|
if callback == nil {
|
||
|
// If batchSet failed, LSM would not have been updated. So, no need to rollback anything.
|
||
|
|
||
|
// TODO: What if some of the txns successfully make it to value log, but others fail.
|
||
|
// Nothing gets updated to LSM, until a restart happens.
|
||
|
defer state.doneCommit(commitTs)
|
||
|
return req.Wait()
|
||
|
}
|
||
|
go func() {
|
||
|
err := req.Wait()
|
||
|
// Write is complete. Let's call the callback function now.
|
||
|
state.doneCommit(commitTs)
|
||
|
callback(err)
|
||
|
}()
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// NewTransaction creates a new transaction. Badger supports concurrent execution of transactions,
|
||
|
// providing serializable snapshot isolation, avoiding write skews. Badger achieves this by tracking
|
||
|
// the keys read and at Commit time, ensuring that these read keys weren't concurrently modified by
|
||
|
// another transaction.
|
||
|
//
|
||
|
// For read-only transactions, set update to false. In this mode, we don't track the rows read for
|
||
|
// any changes. Thus, any long running iterations done in this mode wouldn't pay this overhead.
|
||
|
//
|
||
|
// Running transactions concurrently is OK. However, a transaction itself isn't thread safe, and
|
||
|
// should only be run serially. It doesn't matter if a transaction is created by one goroutine and
|
||
|
// passed down to other, as long as the Txn APIs are called serially.
|
||
|
//
|
||
|
// When you create a new transaction, it is absolutely essential to call
|
||
|
// Discard(). This should be done irrespective of what the update param is set
|
||
|
// to. Commit API internally runs Discard, but running it twice wouldn't cause
|
||
|
// any issues.
|
||
|
//
|
||
|
// txn := db.NewTransaction(false)
|
||
|
// defer txn.Discard()
|
||
|
// // Call various APIs.
|
||
|
func (db *DB) NewTransaction(update bool) *Txn {
|
||
|
if db.opt.ReadOnly && update {
|
||
|
// DB is read-only, force read-only transaction.
|
||
|
update = false
|
||
|
}
|
||
|
|
||
|
txn := &Txn{
|
||
|
update: update,
|
||
|
db: db,
|
||
|
readTs: db.orc.readTs(),
|
||
|
count: 1, // One extra entry for BitFin.
|
||
|
size: int64(len(txnKey) + 10), // Some buffer for the extra entry.
|
||
|
}
|
||
|
if update {
|
||
|
txn.pendingWrites = make(map[string]*Entry)
|
||
|
txn.db.orc.addRef()
|
||
|
}
|
||
|
return txn
|
||
|
}
|
||
|
|
||
|
// View executes a function creating and managing a read-only transaction for the user. Error
|
||
|
// returned by the function is relayed by the View method.
|
||
|
func (db *DB) View(fn func(txn *Txn) error) error {
|
||
|
if db.opt.managedTxns {
|
||
|
return ErrManagedTxn
|
||
|
}
|
||
|
txn := db.NewTransaction(false)
|
||
|
defer txn.Discard()
|
||
|
|
||
|
return fn(txn)
|
||
|
}
|
||
|
|
||
|
// Update executes a function, creating and managing a read-write transaction
|
||
|
// for the user. Error returned by the function is relayed by the Update method.
|
||
|
func (db *DB) Update(fn func(txn *Txn) error) error {
|
||
|
if db.opt.managedTxns {
|
||
|
return ErrManagedTxn
|
||
|
}
|
||
|
txn := db.NewTransaction(true)
|
||
|
defer txn.Discard()
|
||
|
|
||
|
if err := fn(txn); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
return txn.Commit(nil)
|
||
|
}
|